点播式网络研讨会

From MATLAB® to High-Quality RTL Using High-Level Synthesis - The Design Methodology

The Design Methodology

预估观看时长:50 分钟

分享

From MATLAB® to High-Quality RTL Using High-Level Synthesis - The Design Methodology

MATLAB® is a de facto standard algorithm development tool in many image and signal processing hardware designs. Yet, the traditional path from an abstract floating-point MATLAB model to high-quality RTL code is long and often requires multiple manual coding stages, several designers and many code bases to be maintained. This process can be simplified by using Catapult® High-Level Synthesis (HLS) along with a sophisticated workflow. The model transformation from MATLAB to class-based C++ is much simpler than transformation from MATLAB to RTL because the abstraction level can be kept high. Using a systematic data type definition scheme, the conversion to fixed-point can be done in C++ using the same functional C++ code for both floating-point and fixed-point implementations. This reduces the number of code bases to be maintained down to two: one MATLAB and one C++ model that can be automatically validated. The whole process can be completed by 1-2 designers in a short time resulting in similar or even better power, performance and area metrics compared to a hand-coded implementation. This webinar introduces a design methodology that starts from a self-contained MATLAB script and goes through the different workflow steps to HLS generated, high-quality RTL. All design steps including fixed-point conversion are described in detail.

What you will learn:

  • MATLAB to RTL methodology overview
  • Model analysis, data type extraction and HLS structure planning
  • Fixed-point analysis basics
  • Validation of C++ model in MATLAB
  • Step-by-step walkthrough of the workflow

Who should attend:

  • Engineering Directors who need faster design cycles and lower
    verification costs than RTL design provides
  • RTL Design and verification managers who need to improve team
    productivity
  • RTL Designers concerned that RTL might no longer be enough to
    compete
  • System Architects looking for optimal design partitioning for power,
    performance and area
  • Algorithm Developers who are interested in HW bottlenecks in their
    algorithm

主讲嘉宾简介

Siemens EDA

Petri Solanti

Senior Application Engineer

Petri Solanti is a senior application engineer at Siemens, with an HLS and low-power tools focus. He is a designer and application engineer with over 25 years of experience in Electronics System-Level design tools and methodologies. His areas of interest include design methodologies from algorithm to RTL, system analysis and HW/SW co-design. Prior to Mentor, Mr. Solanti held application engineer positions at Cadence, CoWare, Synopsys and MathWorks. He received his MScEE degree from Tampere University of Technology, Finland.

相关资源

优化不同 FPGA 平台的 HLS 代码
White Paper

优化不同 FPGA 平台的 HLS 代码

在此白皮书中,我们将详细介绍一个简单的卷积滤波器,并概括如何使用高层次综合将其导入至不同的 FPGA 平台。

将 Vivado HLS 设计移植到 Catapult HLS 平台
White Paper

将 Vivado HLS 设计移植到 Catapult HLS 平台

当开发要在数字逻辑解决方案—例如现场可编程门阵列 (FPGA) 和专用集成电路 (ASIC)—中实现的算法和知识产权 (IP) 块时,高层次综合 (HLS) 具有显著的优势。

Rapid Algorithm to HW: Using HLS for Computer Vision and Deep Learning Seminar
Webinar

Rapid Algorithm to HW: Using HLS for Computer Vision and Deep Learning Seminar

How HLS helps project teams rapidly & accurately explore power/performance of algorithms, quickly get to FPGA implementations to create demonstrator/prototypes & use same source RTL IP for ASIC implementation.