온디맨드 웨비나

Implementing Machine Learning Hardware Using High-Level Synthesis

예상 소요 시간: 41분

공유

Implementing Machine Learning Hardware Using High-Level Synthesis

Neural networks are typically developed and trained in a high-performance 32-bit floating-point compute environment. But, in many cases a custom hardware solution is needed for the inference engine to meet power and real-time requirements. Each neural network and end-application may have different performance requirements that can dictate the optimal hardware architecture. This makes custom-tailored solutions impossible when using hand-coded RTL creation flows. HLS has the unique ability to quickly go from complex algorithms written in C to generated RTL, enabling accurate profiles for power and performance for an algorithm's implementation without having to write it by hand. This session steps through a CNN (Convolutional Neural Network) inference engine implementation, highlighting specific architectural choices, and shows how to integrate and test inside of TensorFlow. This demonstrates how an HLS flow is used to rapidly design custom CNN accelerators.

This webinar is part 3 of the seminar HLS for Vision and Deep Learning Hardware Accelerators.

What you will learn:

  • How HLS is used to implement a computer vision algorithm in either
    an FPGA or ASIC technology and the trade-offs for power and
    performance.
  • How HLS is employed to analyze unique architectures for a very
    energy-efficient inference solution such as a CNN (Convolutional
    Neural Network) from a pre-trained network.
  • How to integrate the design created in HLS into a larger system,
    including peripherals, processor, and software.
  • How to verify the design in the context of the larger system and how
    to deploy it into an FPGA prototype board.

발표자 소개

Siemens EDA

Michael Fingeroff

HLS Technologist

Michael Fingeroff has worked as an HLS Technologist for the Catapult High-Level Synthesis Platform at Siemens Digital Industries Software since 2002. His areas of interest include Machine Learning, DSP, and high-performance video hardware. Prior to working for Siemens Digital Industries Software, he worked as a hardware design engineer developing real-time broadband video systems. Mike Fingeroff received both his bachelor's and master's degrees in electrical engineering from Temple University in 1990 and 1995 respectively.

관련 자료

Rapid Algorithm to HW: Using HLS for Computer Vision and Deep Learning Seminar
Webinar

Rapid Algorithm to HW: Using HLS for Computer Vision and Deep Learning Seminar

How HLS helps project teams rapidly & accurately explore power/performance of algorithms, quickly get to FPGA implementations to create demonstrator/prototypes & use same source RTL IP for ASIC implementation.

에지 기계 학습: HLS를 이용한 전력 및 성능 최적화
White Paper

에지 기계 학습: HLS를 이용한 전력 및 성능 최적화

기계 학습을 에지(edge)로 옮기려면 전력과 성능 면에서 중요한 요구사항이 뒤따릅니다. 평범한 상용 솔루션을 사용하는 방안은 실용적이지 않습니다.

AI 가속기 생태계: 개요
White Paper

AI 가속기 생태계: 개요

Catapult HLS 플랫폼은 AI 설계자들에게 프로젝트를 바로 시작할 수 있는 환경을 제공하는 AI 가속기 생태계를 제시합니다. 이 에코시스템은 IP 라이브러리부터 완전한 툴키트까지의 리소스를 실무 엔지니어에게 제공합니다.