온디맨드 웨비나

How NVIDIA Uses High-Level Synthesis Tools for AI Hardware Accelerator Research

예상 소요 시간: 19분

공유

To keep up with the rapid pace of change in AI/ML workloads, NVIDIA Research leverages a High-Level Synthesis (HLS) based design methodology based off SystemC and libraries like MatchLib for maximizing code reuse and minimizing design verification effort.

Artificial Intelligence (AI) and Machine Learning (ML) are rapidly transforming many aspects of integrated circuit (IC) design. The high computational demands and evolving AI/ML workloads are dramatically impacting the architecture, VLSI implementation, and circuit design tradeoffs of hardware accelerators. To keep up with the rapid pace of change in AI/ML workloads, NVIDIA Research leverages a High-Level Synthesis (HLS) based design methodology based off SystemC and libraries such as MatchLib for maximizing code reuse and minimizing design verification effort. This methodology provides for rapid co-optimization of AI algorithms and hardware architecture and has enabled NVIDIA Research to tape out a state-of-the-art 5nm deep learning inference accelerator testchip that achieves up to 95.6 TOPS/ with per-vector scaled 4-bit quantization for Transformer neural network inference.

발표자 소개

NVIDIA

Brucek Khailany

Senior Director of ASIC and VLSI Research

Brucek Khailany joined NVIDIA in 2009 and currently leads the ASIC & VLSI Research group. During his time at NVIDIA, he has contributed to projects within research and product groups on topics spanning computer architecture, unit micro-architecture, and ASIC and VLSI design techniques. Dr. Khailany is also currently the Principal Investigator to a NVIDIA-led team under the DARPA CRAFT project researching high-productivity design methodology and design tools. Previously, Dr. Khailany was a Co-Founder and Principal Architect at Stream Processors, Inc. (SPI) where he led research and development activities related to highly-parallel programmable processor architectures. He received his Ph.D. and Masters in Electrical Engineering from Stanford University and received B.S.E. degrees in Electrical Engineering and Computer Engineering from the University of Michigan.

관련 자료

CPG 제조에서의 포뮬레이션 개발 최적화
Webinar

CPG 제조에서의 포뮬레이션 개발 최적화

포뮬레이션 개발 최적화를 소개하는 웨비나를 통해 CPG 제조에서 혁신 효율성을 높이는 방법에 대해 알아보십시오.

디지털화를 사용하여 종이, 잉크 및 에너지 소비를 줄여 지속 가능성 향상
Case Study

디지털화를 사용하여 종이, 잉크 및 에너지 소비를 줄여 지속 가능성 향상

디지털화를 사용하여 종이, 잉크 및 에너지 소비를 줄여 지속 가능성 향상

영상: 엔터프라이즈 레시피 관리 솔루션으로 소비재 산업의 레시피 개발 프로세스 간소화
Video

영상: 엔터프라이즈 레시피 관리 솔루션으로 소비재 산업의 레시피 개발 프로세스 간소화

Siemens Enterprise Recipe Management를 통해 몇 분 만에 레시피를 변환하고 확대하십시오. 생산을 간소화하고 시험 시간을 단축하십시오. Siemens 웨비나 영상을 시청하고 레시피 개발 프로세스를 혁신하십시오.