webinar a la carta

How NVIDIA Uses High-Level Synthesis Tools for AI Hardware Accelerator Research

Tiempo estimado de visualización: 19 minutos

Compartir

To keep up with the rapid pace of change in AI/ML workloads, NVIDIA Research leverages a High-Level Synthesis (HLS) based design methodology based off SystemC and libraries like MatchLib for maximizing code reuse and minimizing design verification effort.

Artificial Intelligence (AI) and Machine Learning (ML) are rapidly transforming many aspects of integrated circuit (IC) design. The high computational demands and evolving AI/ML workloads are dramatically impacting the architecture, VLSI implementation, and circuit design tradeoffs of hardware accelerators. To keep up with the rapid pace of change in AI/ML workloads, NVIDIA Research leverages a High-Level Synthesis (HLS) based design methodology based off SystemC and libraries such as MatchLib for maximizing code reuse and minimizing design verification effort. This methodology provides for rapid co-optimization of AI algorithms and hardware architecture and has enabled NVIDIA Research to tape out a state-of-the-art 5nm deep learning inference accelerator testchip that achieves up to 95.6 TOPS/ with per-vector scaled 4-bit quantization for Transformer neural network inference.

Conoce al invitado

NVIDIA

Brucek Khailany

Senior Director of ASIC and VLSI Research

Brucek Khailany joined NVIDIA in 2009 and currently leads the ASIC & VLSI Research group. During his time at NVIDIA, he has contributed to projects within research and product groups on topics spanning computer architecture, unit micro-architecture, and ASIC and VLSI design techniques. Dr. Khailany is also currently the Principal Investigator to a NVIDIA-led team under the DARPA CRAFT project researching high-productivity design methodology and design tools. Previously, Dr. Khailany was a Co-Founder and Principal Architect at Stream Processors, Inc. (SPI) where he led research and development activities related to highly-parallel programmable processor architectures. He received his Ph.D. and Masters in Electrical Engineering from Stanford University and received B.S.E. degrees in Electrical Engineering and Computer Engineering from the University of Michigan.

Recursos relacionados

Optimiza el desarrollo de fórmulas en la fabricación de bienes de consumo envasados
Webinar

Optimiza el desarrollo de fórmulas en la fabricación de bienes de consumo envasados

Descubre cómo impulsar la innovación en la fabricación de bienes de consumo envasados con este webinar sobre la optimización del desarrollo de fórmulas.

Uso de la digitalización para mejorar la sostenibilidad reduciendo el consumo de papel, tinta y energía
Case Study

Uso de la digitalización para mejorar la sostenibilidad reduciendo el consumo de papel, tinta y energía

Uso de la digitalización para mejorar la sostenibilidad reduciendo el consumo de papel, tinta y energía

Vídeo: Enterprise Recipe Management para bienes de consumo envasados: optimización del proceso de desarrollo de recetas
Video

Vídeo: Enterprise Recipe Management para bienes de consumo envasados: optimización del proceso de desarrollo de recetas

Transforma y amplía tus recetas en cuestión de minutos con Siemens Enterprise Recipe Management. Optimiza la producción y reduce los tiempos de prueba. Nuestro vídeo muestra cómo revolucionar tu proceso de desarrollo de recetas.