点播式网络研讨会

CEA: Bridging the Gap Between Neural Network Exploration and Hardware Implementation

预估观看时长:20 分钟

分享

CEA presents a methodology that bridges the open-source DL framework N2D2 and Catapult HLS to help reducing the design process of hardware accelerators, making it possible to keep pace with new AI algorithms.

Deep Learning algorithms are rapidly evolving, with new techniques and architectures being proposed on a regular basis. This poses a significant challenge for hardware design. These algorithms often require specialized hardware accelerators for efficient execution. However, the design cycle for these accelerators is complex and time-consuming, as it involves a significant effort to master the algorithm and implement an appropriate hardware architecture. As new DL algorithms emerge, existing hardware accelerators may become obsolete or may not be able to integrate the latest optimizations. This leads to a significant gap between newly emerging algorithms and available hardware accelerators. To address this problem, High-Level Synthesis (HLS) use has increased to accelerate the design process and bridge the gap between software and hardware design by describing the desired behavior of the accelerator in a high-level programming language (e.g. C++). We present a methodology that bridges the open-source DL framework N2D2 and Catapult HLS to help reducing the design process of hardware accelerators, making it possible to keep pace with new AI algorithms. By proposing a new automatic synchronization, we were able to balance the execution time of all convolutional layers in MobileNet-v1 to achieve a pipelined hardware architecture capable of handling 500 fps.

主讲嘉宾简介

CEA List (French Alternative Energies and Atomic Energy Commission)

Nermine Ali

PhD - Research Engineer

Nermine Ali is a research engineer at CEA List (French Alternative Energies and Atomic Energy Commission), France, in the field of embedded systems and artificial intelligence, since December 2021. She received her PhD Degree in Electronics from Université de Bretagne-Sud, France, in 2022. Her current research interests include hardware designs for neural networks applications and high-level design flows including High-Level Synthesis tools to exploit fast exploration and hardware generation.

相关资源

通过加快流体力学仿真来改进船舶设计流程
Webinar

通过加快流体力学仿真来改进船舶设计流程

创建更加快速的流体力学仿真并优化船舶设计流程。使用这些 CFD 仿真软件技术即可节省时间。

Simulation process and data management for ship design
Webinar

Simulation process and data management for ship design

Learn how to create a seamless ship design workflow with simulation and data sharing. Ensure effective collaboration and provide the right information.

释放集成式 CAE 工作流程的强大功能,实现快艇的高效设计
Webinar

释放集成式 CAE 工作流程的强大功能,实现快艇的高效设计

了解如何使用系统仿真创建推进系统,并将其部署在计算流体动力学(CFD)自推进系统仿真中,以评估最大速度。