온디맨드 웨비나

Stanford University: Edge ML Accelerator SoC Design Using Catapult HLS

예상 소요 시간: 56분

공유

This webinar describes the design and verification of the systolic array-based DNN accelerator taped out by Stanford, the performance optimizations of the accelerator, and the integration of the accelerator into an SoC.

High-Level Synthesis (HLS) offers a fast path from specification to physical design ready RTL by enabling a very high design and verification productivity. HLS handles several lower-level implementation details, including scheduling and pipelining, which allows designers to work at a higher level of abstraction on the more important architectural details. Designing at the C++ level allows for rapid iterations, thanks to faster simulations and easier debugging, and the ability to quickly explore different architectures. HLS is a perfect match for designing DNN accelerators, given its ability to automatically generate the complex control logic that is often needed. This webinar will describe the design and verification of the systolic array-based DNN accelerator taped out by our group, the performance optimizations of the accelerator, and the integration of the accelerator into an SoC. Our accelerator achieves 2.2 TOPS/W and performs ResNet-18 inference in 60 ms and 8.1 mJ.  

What you will Learn

  • Effective use of HLS for ML accelerator design
  • Analyzing performance and optimizations
  • Integrating an HLS design into an SoC

Who Should Attend

  • System architects and RTL/HW designers interested in using HLS for ML accelerators

발표자 소개

Stanford University

Kartik Prabhu

PhD student in Electrical Engineering

Kartik is a PhD student in Electrical Engineering at Stanford University advised by Professor Priyanka Raina. He received his M.S. degree in Electrical Engineering from Stanford University in 2021 and B.S. degree in Computer Engineering from Georgia Tech in 2018. His research focuses on designing energy efficient hardware accelerators for machine learning.

관련 자료

Minimizing risk in medical device development via simulation
Webinar

Minimizing risk in medical device development via simulation

Learn how simulation reduces risk at multiple stages of the medical device development process.

In Sillico 임상 실험으로 나아가다: CFD를 사용해 가상 환자로 의료 기기 성능 평가
Webinar

In Sillico 임상 실험으로 나아가다: CFD를 사용해 가상 환자로 의료 기기 성능 평가

다중 물리 시뮬레이션의 사용 가능성이 확대되면서 In Sillico라고 불리는 완전한 디지털 방식의 임상 실험 가능성도 확장되고 있습니다. CFD 시뮬레이션과 가상 환자를 사용해 의료 기기 성능과 견고성을 평가하는 방법