온디맨드 웨비나

How NVIDIA Uses High-Level Synthesis Tools for AI Hardware Accelerator Research

예상 소요 시간: 19분

공유

To keep up with the rapid pace of change in AI/ML workloads, NVIDIA Research leverages a High-Level Synthesis (HLS) based design methodology based off SystemC and libraries like MatchLib for maximizing code reuse and minimizing design verification effort.

Artificial Intelligence (AI) and Machine Learning (ML) are rapidly transforming many aspects of integrated circuit (IC) design. The high computational demands and evolving AI/ML workloads are dramatically impacting the architecture, VLSI implementation, and circuit design tradeoffs of hardware accelerators. To keep up with the rapid pace of change in AI/ML workloads, NVIDIA Research leverages a High-Level Synthesis (HLS) based design methodology based off SystemC and libraries such as MatchLib for maximizing code reuse and minimizing design verification effort. This methodology provides for rapid co-optimization of AI algorithms and hardware architecture and has enabled NVIDIA Research to tape out a state-of-the-art 5nm deep learning inference accelerator testchip that achieves up to 95.6 TOPS/ with per-vector scaled 4-bit quantization for Transformer neural network inference.

발표자 소개

NVIDIA

Brucek Khailany

Senior Director of ASIC and VLSI Research

Brucek Khailany joined NVIDIA in 2009 and currently leads the ASIC & VLSI Research group. During his time at NVIDIA, he has contributed to projects within research and product groups on topics spanning computer architecture, unit micro-architecture, and ASIC and VLSI design techniques. Dr. Khailany is also currently the Principal Investigator to a NVIDIA-led team under the DARPA CRAFT project researching high-productivity design methodology and design tools. Previously, Dr. Khailany was a Co-Founder and Principal Architect at Stream Processors, Inc. (SPI) where he led research and development activities related to highly-parallel programmable processor architectures. He received his Ph.D. and Masters in Electrical Engineering from Stanford University and received B.S.E. degrees in Electrical Engineering and Computer Engineering from the University of Michigan.

관련 자료

AI 가속기 생태계: 개요
White Paper

AI 가속기 생태계: 개요

Catapult HLS 플랫폼은 AI 설계자들에게 프로젝트를 바로 시작할 수 있는 환경을 제공하는 AI 가속기 생태계를 제시합니다. 이 에코시스템은 IP 라이브러리부터 완전한 툴키트까지의 리소스를 실무 엔지니어에게 제공합니다.

저전력 설계는 Arm의 마인드셋
White Paper

저전력 설계는 Arm의 마인드셋

저전력 설계는 Arm의 마인드셋입니다. 모든 팀 구성원들은 모든 설계 수준에서 전력 절약 기회를 모색합니다. Arm은 애플리케이션부터 트랜지스터 수준에 이르기까지 저전력 설계를 향한 시스템 수준 접근법을 택하고 있습니다.

PowerPro를 이용한 Arm사의 입력파일 완성도 검증 방법론
White Paper

PowerPro를 이용한 Arm사의 입력파일 완성도 검증 방법론

이 백서에서는 IC Design 구축과 프로토타입 단계에서 다양한 데이터 무결성 검사를 수행하는 Siemens EDA의 PowerPro™ 소프트웨어 포트폴리오를 이용해 Arm사에서 적용한 새로운 자동 입력파일 완성도 검증 방법론을 제안합니다.