온디맨드 웨비나

Catapult AI NN – From AI/ML Framework to Optimized RTL

예상 소요 시간: 13분

공유

Intro slide to session

As demand for Machine Learning increases, the need for custom hardware acceleration is exploding. Developing hardware that is optimally tuned for Performance, Power & Area (PPA) and optimized to the network and application delivers enormous competitive advantages in silicon. Designers working in AI/ML Frameworks such as TensorFlow, PyTorch have previously relied on “rule of thumb” or RTL design teams to assess the cost of implementation. Catapult AI NN now delivers a methodology and flow from “AI/ML Framework to RTL” enabling rapid exploration of network, quantization, design reuse factors on a layer-by-layer basis for PPA, generating production-ready custom RTL without needing extensive HLS knowledge or RTL skills.

발표자 소개

Siemens EDA

Stuart Clubb

Technical Product Management Director

Stuart is responsible for Catapult HLS Synthesis and Verification Solutions since July 2017. Prior to this role, Stuart had been successfully managing the North American FAE team for Mentor/Siemens and Calypto Design Systems and was key to the growth achieved for the CSD products after the Calypto acquisition. Moving from the UK in 2001 to work at Mentor Graphics, Stuart held the position of Technical Marketing Engineer, initially on the Precision RTL synthesis product for 6 years and later on Catapult for 5 years. He has held various engineering and application engineering roles ASIC and FPGA RTL hardware design and verification. Stuart graduated from Brunel University, London, with a Bachelors of Science.

관련 자료

블루닷: Catapult-HLS를 이용한 NN기반의 DeepField-PQO 설계 가속화
White Paper

블루닷: Catapult-HLS를 이용한 NN기반의 DeepField-PQO 설계 가속화

고화질 영상에 대한 시장의 수요 증가로 인해 높은 인코딩 비용에 대한 비디오 서비스 제공 업체의 부담이 커지고 있습니다. 이 문제를 해결하기 위해 블루닷은 비디오 인코딩 효율을 향상시키는 AI 기반의 CODEC용 전처리 DeepField-PQO 필터를 개발하였습니다. 블루닷은 필터를 FPGA용 IP로 빠르게 구현하기 위해 HLS를 활용하고, ASIC용으로는 Catapult HLS를 활용하였습니다.

Xperi®: A Designer’s Life with HLS
Webinar

Xperi®: A Designer’s Life with HLS

This webinar will discuss two aspects of their experience going from RTL to HLS. The first topic is using HLS for algorithms such as Face Detection th