オンデマンド・ウェビナー

Catapult AI NN – From AI/ML Framework to Optimized RTL

視聴時間の目安: 13 分

共有

Intro slide to session

As demand for Machine Learning increases, the need for custom hardware acceleration is exploding. Developing hardware that is optimally tuned for Performance, Power & Area (PPA) and optimized to the network and application delivers enormous competitive advantages in silicon. Designers working in AI/ML Frameworks such as TensorFlow, PyTorch have previously relied on “rule of thumb” or RTL design teams to assess the cost of implementation. Catapult AI NN now delivers a methodology and flow from “AI/ML Framework to RTL” enabling rapid exploration of network, quantization, design reuse factors on a layer-by-layer basis for PPA, generating production-ready custom RTL without needing extensive HLS knowledge or RTL skills.

講演者の紹介

Siemens EDA

Stuart Clubb

Technical Product Management Director

Stuart is responsible for Catapult HLS Synthesis and Verification Solutions since July 2017. Prior to this role, Stuart had been successfully managing the North American FAE team for Mentor/Siemens and Calypto Design Systems and was key to the growth achieved for the CSD products after the Calypto acquisition. Moving from the UK in 2001 to work at Mentor Graphics, Stuart held the position of Technical Marketing Engineer, initially on the Precision RTL synthesis product for 6 years and later on Catapult for 5 years. He has held various engineering and application engineering roles ASIC and FPGA RTL hardware design and verification. Stuart graduated from Brunel University, London, with a Bachelors of Science.

関連情報

徹底的な試験を減らして、期待以上のADAS安全性と快適性を達成 - ビデオ
Video

徹底的な試験を減らして、期待以上のADAS安全性と快適性を達成 - ビデオ

このビデオは、デジタル・ツインによるシミュレーションを物理試験と平行させることで、より多くの知見を得て開発全体の精度と速度をいかに高めるかを説明します。

ADASおよび運転支援システムの性能を検証
White Paper

ADASおよび運転支援システムの性能を検証

Tass Internationalのソリューションを使って、Euro NCAPの自動運転機能格付けに関するシステム要件にしたがってADASおよび運転支援システムの性能を検証。詳細情報