webinaire à la demande

How NVIDIA Uses High-Level Synthesis Tools for AI Hardware Accelerator Research

Durée estimée : 19 minutes

Partager

To keep up with the rapid pace of change in AI/ML workloads, NVIDIA Research leverages a High-Level Synthesis (HLS) based design methodology based off SystemC and libraries like MatchLib for maximizing code reuse and minimizing design verification effort.

Artificial Intelligence (AI) and Machine Learning (ML) are rapidly transforming many aspects of integrated circuit (IC) design. The high computational demands and evolving AI/ML workloads are dramatically impacting the architecture, VLSI implementation, and circuit design tradeoffs of hardware accelerators. To keep up with the rapid pace of change in AI/ML workloads, NVIDIA Research leverages a High-Level Synthesis (HLS) based design methodology based off SystemC and libraries such as MatchLib for maximizing code reuse and minimizing design verification effort. This methodology provides for rapid co-optimization of AI algorithms and hardware architecture and has enabled NVIDIA Research to tape out a state-of-the-art 5nm deep learning inference accelerator testchip that achieves up to 95.6 TOPS/ with per-vector scaled 4-bit quantization for Transformer neural network inference.

À propos de l'intervenant

NVIDIA

Brucek Khailany

Senior Director of ASIC and VLSI Research

Brucek Khailany joined NVIDIA in 2009 and currently leads the ASIC & VLSI Research group. During his time at NVIDIA, he has contributed to projects within research and product groups on topics spanning computer architecture, unit micro-architecture, and ASIC and VLSI design techniques. Dr. Khailany is also currently the Principal Investigator to a NVIDIA-led team under the DARPA CRAFT project researching high-productivity design methodology and design tools. Previously, Dr. Khailany was a Co-Founder and Principal Architect at Stream Processors, Inc. (SPI) where he led research and development activities related to highly-parallel programmable processor architectures. He received his Ph.D. and Masters in Electrical Engineering from Stanford University and received B.S.E. degrees in Electrical Engineering and Computer Engineering from the University of Michigan.

Ressources associées

Maîtriser la complexité et les problématiques d'intégration des systèmes aéronautiques grâce au MBSE
Solution Brief

Maîtriser la complexité et les problématiques d'intégration des systèmes aéronautiques grâce au MBSE

Les entreprises aéronautiques peuvent accélérer le cycle de développement des programmes, gagner en agilité et livrer des produits de qualité, tout en faisant des économies. Pour en savoir plus, consultez ce livre blanc.

Processus d'implémentation de l'approche MBSE dans le secteur Aéronautique
Brochure

Processus d'implémentation de l'approche MBSE dans le secteur Aéronautique

Adoptez un plan d'intégration MBSE adapté aux besoins de votre entreprise aéronautique. Notre équipe vous assistera à chaque étape de votre processus. En savoir plus.