webinaire à la demande

From Simulink to High-Quality RTL using High-Level Synthesis - The Design Methodology

The Design Methodology

Durée estimée : 63 minutes

Partager

From Simulink to High-Quality RTL using High-Level Synthesis - The Design Methodology

Nowadays many ASIC and FPGA design projects start with a Simulink reference model. The traditional path from an abstract floating-point Simulink model to high-quality RTL code is long and often requires multiple manual coding stages, several designers and multiple code bases to be maintained. This process can be simplified by using Catapult High-Level Synthesis (HLS) along with a sophisticated workflow. The model transformation from Simulink to class-based C++ is much simpler than transformation to RTL because the abstraction level can be kept almost the same and the design hierarchy can be taken from the Simulink model hierarchy. Furthermore, by using a systematic data type definition scheme, the same functional C++ code can be used for both floating-point and fixed-point implementations. This reduces the number of code bases to be maintained down to two. The whole process can be completed by 1-2 designers in a short time resulting in similar or even better power, performance and area metrics compared to a hand-coded implementation. This webinar introduces a design methodology that will start from a flat floating-point Simulink model and step through to HLS generated RTL. All design steps including fixed-point conversion are described in detail.

What you will learn:

  • Simulink to RTL methodology overview
  • Step-by-step walkthrough of the workflow:
  • Preparing Simulink model for the transformation
  • Converting Simulink design to HLS C++
  • Validating Catapult HLS C++ model with Simulink
  • Fixed-point conversion aka Quantizing HLS model
  • High-Level Verification using Catapult Coverage

Who should attend:

  • Engineering Directors who need faster design cycles and lower
    verification costs than RTL design provides
  • RTL Design and verification managers who need to improve team
    productivity
  • RTL Designers concerned that RTL might no longer be enough to
    compete
  • System Architects looking for optimal design partitioning for power,
    performance and area
  • Algorithm Developers who are interested in HW bottlenecks in their
    algorithm

À propos de l'intervenant

Siemens EDA

Petri Solanti

Senior Application Engineer

Petri Solanti is a senior application engineer at Siemens, with an HLS and low-power tools focus. He is a designer and application engineer with over 25 years of experience in Electronics System-Level design tools and methodologies. His areas of interest include design methodologies from algorithm to RTL, system analysis and HW/SW co-design. Prior to Mentor, Mr. Solanti held application engineer positions at Cadence, CoWare, Synopsys and MathWorks. He received his MScEE degree from Tampere University of Technology, Finland.

Ressources associées

Conception et analyse structurelles des avions
Webinar

Conception et analyse structurelles des avions

Découvrez comment un processus intégré de conception et d'analyse structurelles des avions peut contribuer à réduire les délais de certification et de développement ainsi que les dépassements de coûts.

Conception et analyse structurelles des avions
White Paper

Conception et analyse structurelles des avions

Les outils et les équipes déconnectés ne peuvent pas répondre aux défis zéro carbone que s;est lancé le secteur aéronautique. Simcenter facilite la conception et l'analyse simultanées de la structure des avions.

Digital image correlation for aircraft materials and structural testing
Webinar

Digital image correlation for aircraft materials and structural testing

Watch this webinar on aircraft materials and structural testing to learn how digital image correlation alleviates limitations and offers new insights.