webinar a la carta

Session 7: Predictive Maintenance, Condition Monitoring and failure prediction

Compartir

Session 7: Predictive Maintenance, Condition Monitoring and failure prediction

Watch our final part of a 7 part series.

During this session, we explain how prognostic health management and failure prediction methodologies are applied to quantify the remaining useful lifetime (RUL) of components, subsystem and machines under its specific real-use conditions – instead of determining the ultimate lifetime on a statistical average.

Data analytics and virtual sensing technology are used to gather deeper system insight during condition monitoring. By connecting the real data with system simulation or CAE 3D simulation in a digital twin, we can take targeted preventive actions before a predicted failure occurs.

Conoce al invitado

Siemens Digital Industries Software

Ralf Leis

Service Project Manager for „Data Analytics & Durability“

Graduated from Kaiserslautern University with a degree in Civil Engineering in 2001 and worked for Simcenter Engineering Services team since then as project engineer first, nowadays as service program manager and business development manager for data analytics and durability. He has a long-standing experience in the planning and execution of different kind of durability projects from load measurements, data processing and analysis up to CAE based fatigue life analysis.

Recursos relacionados

Uso de soluciones de pruebas avanzadas para optimizar el análisis de NVH de la tracción de las bicicletas eléctricas
Case Study

Uso de soluciones de pruebas avanzadas para optimizar el análisis de NVH de la tracción de las bicicletas eléctricas

MAHLE utiliza Simcenter para reducir en un 80 % el tiempo de caracterización de la tracción y ofrecer productos de calidad