There is a wide range of solutions for implementation of the inference stage of convolutional neural networks available on the market. Almost all of them follow a generic accelerator approach which introduces overhead and implementation penalties for a specific network configuration. High-level Synthesis leverages application/network specific optimizations to further optimize PPA for specific neural networks or classes of networks. This webinar gives an introduction to the design flow starting from AI/ML frameworks like TensorFlow down to FPGA/ASIC and relevant optimization techniques.
This webinar is part 6 of the webinar series HLS for Vision and Deep Learning Hardware Accelerators.