on-demand webinar

NVIDIA: Design and Verification of a Machine Learning Accelerator SoC Using an Object-Oriented HLS-Based Design Flow

Using an Object-Oriented HLS-Based Design Flow

Estimated Watching Time: 28 minutes

Share

NVIDIA: Design and Verification of a Machine Learning Accelerator SoC Using an Object-Oriented HLS-Based Design Flow

A high-productivity digital VLSI flow for designing complex SoCs is presented in this webinar. It includes High-Level Synthesis tools, an efficient implementation of Latency-Insensitive Channels, and MatchLib - an object-oriented library of synthesizable SystemC and C++ components. The flow was demonstrated on a programmable machine learning inference accelerator SoC designed in 16nm FinFET technology.

NVIDIA’s DAC Paper: A Modular Digital VLSI Flow for High-Productivity SoC Design.

What you will learn:

  • How to shorten development time & cost
  • A high-productivity digital VLSI flow for designing complex SoCs
  • Efficient implementation of Latency-Insensitive Channels
  • MatchLib - an object-oriented library of synthesizable SystemC and
    C++ components

Who Should Attend

  • RTL designers
  • ASIC Designers
  • Engineers
  • Hardware architects
  • Managers

Meet the speaker

NVIDIA

Brucek Khailany

Senior Director of ASIC and VLSI Research

Brucek Khailany joined NVIDIA in 2009 and currently leads the ASIC & VLSI Research group. During his time at NVIDIA, he has contributed to projects within research and product groups on topics spanning computer architecture, unit micro-architecture, and ASIC and VLSI design techniques. Dr. Khailany is also currently the Principal Investigator to a NVIDIA-led team under the DARPA CRAFT project researching high-productivity design methodology and design tools. Previously, Dr. Khailany was a Co-Founder and Principal Architect at Stream Processors, Inc. (SPI) where he led research and development activities related to highly-parallel programmable processor architectures. He received his Ph.D. and Masters in Electrical Engineering from Stanford University and received B.S.E. degrees in Electrical Engineering and Computer Engineering from the University of Michigan.

Related resources

How low-code solutions accelerate industrial machinery manufacturing
E-book

How low-code solutions accelerate industrial machinery manufacturing

Discover how low-code solutions like Mendix empower industrial machinery manufacturers to accelerate digital transformation, master complexity and optimize design, manufacturing and service operations.

Advanced planning and scheduling (APS) for Industrial Machinery
E-book

Advanced planning and scheduling (APS) for Industrial Machinery

Gain better visibility and improve manufacturing processes with advanced planning and scheduling software. Read the ebook to learn more.

Get started with advanced planning and scheduling
Infographic

Get started with advanced planning and scheduling

Struggling with production bottlenecks? See how Siemens’ APS software optimizes scheduling, reduces cycle times, and boosts efficiency for parts manufacturers and machine shops of all sizes.