on-demand webinar

Heterogeneous Integration of Chiplets Using 3D IC

Share

Visual of a 3D IC design

The method of fabricating a device on a single piece of silicon, known as monolithic semiconductor fabrication, is not affordable, expedient or low risk. As processing demands and the need for scalability rise, system-on-chip (SoC) is less likely a future solution. More is now expected than what Moore’s law originally anticipated.

The solution, a homogenous SoC disaggregated into function-specific chiplets. Through heterogeneous integration using 3D IC packaging, chiplets can be mixed, matched, and merged for increased, diverse functionality.

Watch the on-demand webinar to learn how heterogeneous integration improves IC design.

3D IC packaging: heterogeneous integration and hyper-scalability

Heterogeneous integration using 3D IC packaging provides key advantages that outshine a conventional monolithic SoCs. These include:

  • Reduced area of processor core
  • Higher speed processor memory interface
  • Increased performance
  • Product configurability and scalability

See how packaging design workflows can benefit from the emerging chiplet ecosystem and enable hyper scalability. If you’re considering developing or using artificial intelligence, learn why you should consider heterogeneous integration to optimize your designs through specific project objectives.

Why consider heterogeneous integration to optimize your 3D IC designs?

If design and package teams set and follow certain codesign tenets, the heterogeneous integration of chiplets is a game-changer for any application that necessitates high-compute components and diverse functionality. Modern, cutting-edge applications such as artificial intelligence, HPC, 5G, IoT, and consumer mobile will benefit from 3D IC designs, driving an electronic device demand that presses the need for ever-increasing performance at ever-decreasing costs.

Related resources

Overcoming submarine design challenges
White Paper

Overcoming submarine design challenges

Read this white paper to learn how using system simulation ensure safety and efficiency in the complex design and performance of today’s submarines.

Simcenter Amesim for shipbuilding
Fact Sheet

Simcenter Amesim for shipbuilding

Predicting the behavior of any component or system early in the design process

Unleash the power of an integrated CAE workflow for efficient design of fast boats
Webinar

Unleash the power of an integrated CAE workflow for efficient design of fast boats

Learn how you can create a propulsion system with systems simulations and deploy it in a computational fluid dynamics (CFD) self-propulsion simulation to assess the maximum speed.