온디맨드 웨비나

Oak Ridge National Lab (ORNL): A Spiking Neural Network Architecture for Ultra-low Power and Ultra-low Latency Computing

예상 소요 시간: 23분

공유

ORNL with the help of the Siemens EDA tools, including Catapult HLS, the neuromorphic accelerator is being adapted from an FPGA prototype to a more capable and lower-power ASIC implementation.

The U.S. Department of Energy (DOE) has called on the national labs to strengthen their microelectronics capabilities. In response, Oak Ridge National Lab (ORNL) has formed an internal microelectronics initiative with a focus on AI for scientific applications and energy-efficient computing. Researchers in the Architectures and Performance Group at ORNL have developed a digital neuromorphic architecture specifically designed for scientific applications that require ultra-low latency. With the help of the Siemens EDA tools, including Catapult HLS, the neuromorphic accelerator is being adapted from an FPGA prototype to a more capable and lower-power ASIC implementation. In collaboration with the Sensors and Electronics Group, the neuromorphic processor is also being re-target towards another import DoE mission of nuclear safeguards. This effort is exercising Siemens analog and mixed-signal tooling to integrate the neuromorphic processor with the sensing elements more closely by exploring efficient analog encoding neurons and event-driven gamma-ray detection. This presentation will give a brief overview of nuclear safeguards and other scientific applications at ORNL. Then, we will present the work done so far to develop the ASIC neuromorphic processor, the progress and plans for the mixed-signal processing and sensor subsystem, and finally, the dataset and algorithmic details we are leveraging to demonstrate the project’s capabilities.

발표자 소개

Oak Ridge National Lab (ORNL)

Brett Witherspoon

Embedded Hardware and Software Engineer

Brett Witherspoon is an Embedded Systems Hardware & Software Engineer in the Sensors and Electronics Group at ORNL. He specializes in electronics design and analog/digital signal processing for low-power embedded systems. For much of his career, he has researched practical applications of AI/ML for wireless communications and sensing. Highlights include winning the DARPA Spectrum Challenge (2013-2014) and placing fourth in the final round of the DARPA Spectrum Collaboration Challenge (2016-2019) as an R&D engineer at Tennessee Technological University and later as an independent consultant. Since joining ORNL in 2021 he has focused primarily on radiation monitoring systems and embedded neuromorphic systems.

관련 자료

Infineon: HLS Formal Verification Flow Using Siemens Formal Verification
Webinar

Infineon: HLS Formal Verification Flow Using Siemens Formal Verification

High-Level Synthesis (HLS) is design flow in which design intent is described at a higher level of abstraction such as SystemC/C++/Matlab/etc.

STMicroelectronics: A Common C++ and UVM Verification Flow of High-Level IP
Webinar

STMicroelectronics: A Common C++ and UVM Verification Flow of High-Level IP

STMicro presents a unified way to integrate the definition of RTL and C functional coverage and assertion (reducing the coding effort) and a method to add constraints to the random values generated in UVMF.

CEA: Bridging the Gap Between Neural Network Exploration and Hardware Implementation
Webinar

CEA: Bridging the Gap Between Neural Network Exploration and Hardware Implementation

CEA presents a methodology that bridges the open-source DL framework N2D2 and Catapult HLS to help reducing the design process of hardware accelerators, making it possible to keep pace with new AI algorithms.

High-Level Synthesis & Advanced RTL Power Optimization – Are you still missing out?
Webinar

High-Level Synthesis & Advanced RTL Power Optimization – Are you still missing out?

Discover how C++ & SystemC/MatchLib HLS is more than just converting SystemC to RTL. In the RTL Design space, we will cover our technology for Power Optimization with PowerPro Designer & Optimizer.

Alibaba: Innovating Agile Hardware Development with Catapult HLS
Webinar

Alibaba: Innovating Agile Hardware Development with Catapult HLS

At the IP level, an ISP was created within a year using Catapult, a task impossible using traditional RTL. To reduce dependency on designer experience, Alibaba introduced an AI-assisted DSE tool.

Space Codesign High-Level Synthesis for Hardware/Software Architectural Exploration of an Inferencing Algorithm
Webinar

Space Codesign High-Level Synthesis for Hardware/Software Architectural Exploration of an Inferencing Algorithm

Space Codesign Seminar: design flow including HW/SW co-design & HLS that allows developers to migrate compute intensive functions from software running on an embedded processor to a hardware based accelerator.