온디맨드 웨비나

FNAL: Ultrafast Neural Networks for On-Detector Edge Processing in Resource-Constrained Extreme Radiation Environment

Ultrafast Neural Networks for On-Detector Edge Processing in Resource-Constrained Extreme Radiation Environment

공유

 FNAL demos that a NN autoencoder model can be implemented in a radiation-tolerant ASIC to perform lossy data compression. This alleviates the data transmission problem while preserving the detector energy profile's critical info.

Fermi National Accelerator Laboratory will demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. This AI algorithm enables specialized compute capability and has been optimized for data compression in the trigger path of the High-Granularity Endcap Calorimeter (HGCal), an upgrade for the Compact Muon Solenoid (CMS) experiment for the high-luminosity LHC (HL-LHC). The implementation of a complex neural network algorithm demonstrates the effectiveness of Catapult High-Level Synthesis (HLS) based design automation flow utilizing the hls4ml framework for developing design IP for ASICs. The low-power, low-latency hardware accelerator is designed to explore the use of unsupervised machine learning methods to obtain 7x to 16x data compression at inference rates of 40 MHz. The objective encoding can be adapted based on detector conditions and geometry by updating the trained weights. The design has been implemented in an LP CMOS 65 nm process. It occupies a total area of 2.5 mm2, consumes 80 mW of power and is optimized to withstand approximately 200 MRad ionizing radiation.

관련 자료

Xperi®: A Designer’s Life with HLS
Webinar

Xperi®: A Designer’s Life with HLS

This webinar will discuss two aspects of their experience going from RTL to HLS. The first topic is using HLS for algorithms such as Face Detection th

High-Level Synthesis Verification Technologies and Techniques
Webinar

High-Level Synthesis Verification Technologies and Techniques

This session will describe applying known and trusted static, formal and dynamic approaches to verification performed at the C++ or SystemC HLS level of abstraction.

NVIDIA: High-Level Synthesis in Agile System-on-Chip Flows: Overview and Techniques
Webinar

NVIDIA: High-Level Synthesis in Agile System-on-Chip Flows: Overview and Techniques

This talk provides a brief overview of NVIDIA Research’s use of Catapult HLS and highlights some useful features and flows of the Connections library, such as the ability to back-annotate SystemC simulations.