온디맨드 웨비나

Alibaba: Innovating Agile Hardware Development with Catapult HLS

예상 소요 시간: 32분

공유

At the IP level, an ISP was created within a year using Catapult, a task impossible using traditional RTL. To reduce dependency on designer experience, Alibaba introduced an AI-assisted DSE tool.

The high cost and lengthy development cycle of chip design have significantly impeded innovation in the industry. Recent advancements in hardware description languages, domain-specific hardware accelerators, and AI-assisted EDA tools are propelling the chip design methodology towards a new era. This talk will showcase Alibaba's efforts to revolutionize agile chip development technologies on the IP and SoC levels using Catapult HLS.  

At the IP level, we adopted a software-hardware co-design approach to develop an image signal processor (ISP) with the help of Catapult HLS. While the tool provided significant benefits, the designer's experience and knowledge of the target architecture still played a significant role in selecting derivates. To address this challenge, we introduced an AI-assisted design space exploration (DSE) tool that automatically generates optimal solutions or trade-offs among different objectives under specific constraints. By leveraging Catapult HLS and our DSE tool, we successfully developed an efficient ISP with desired engineering quality within a year, a task that would have been impossible using traditional methods. Moving forward, we plan to open-source this HLS-based IP to foster extensive industry-academia collaboration and contribute to the community.  

On the SoC level, we developed an HLS-based AXI performance monitor that simplifies large-scale SoC performance test. Due to the limitations of RTL simulation (not scalable for complex SoC simulation) and TLM (not synthesizable if written in SystemVerilog), we deployed Catapult HLS and designed a synthesizable performance monitor in SystemC to capture AXI data transactions on a large-scale emulation platform. Under the hood, this module provides two modes: the first mode recording transaction details, and second mode outputs performance statistics. In summary, our HLS-based AXI performance monitor enables high-productivity full system hardware emulation, validation, and profiling, what is drastically helpful on SoC performance evaluation. 

발표자 소개

Alibaba

Sicheng Li

Research Scientist

Sicheng Li is currently a Research Scientist in Computing Technology Lab at Alibaba DAMO Academy, Sunnyvale, CA, USA. He received his M.S. from New York University and Ph.D. from University of Pittsburgh. Before joining Alibaba, he also worked with HP Labs, Micron and an AI accelerator startup DEEPHi. His current research interests include electronic design automation, machine learning, domain-specific hardware architectures and FPGA. He has published 20+ technical papers in DAC, ICCAD, FCCM, NeurIPS, AAAI, Nature communications, etc.

관련 자료

블루닷: Catapult-HLS를 이용한 NN기반의 DeepField-PQO 설계 가속화
White Paper

블루닷: Catapult-HLS를 이용한 NN기반의 DeepField-PQO 설계 가속화

고화질 영상에 대한 시장의 수요 증가로 인해 높은 인코딩 비용에 대한 비디오 서비스 제공 업체의 부담이 커지고 있습니다. 이 문제를 해결하기 위해 블루닷은 비디오 인코딩 효율을 향상시키는 AI 기반의 CODEC용 전처리 DeepField-PQO 필터를 개발하였습니다. 블루닷은 필터를 FPGA용 IP로 빠르게 구현하기 위해 HLS를 활용하고, ASIC용으로는 Catapult HLS를 활용하였습니다.

Xperi®: A Designer’s Life with HLS
Webinar

Xperi®: A Designer’s Life with HLS

This webinar will discuss two aspects of their experience going from RTL to HLS. The first topic is using HLS for algorithms such as Face Detection th