on-demand webinar

Stanford University: Edge ML Accelerator SoC Design Using Catapult HLS

Estimated Watching Time: 56 minutes

Share

This webinar describes the design and verification of the systolic array-based DNN accelerator taped out by Stanford, the performance optimizations of the accelerator, and the integration of the accelerator into an SoC.

High-Level Synthesis (HLS) offers a fast path from specification to physical design ready RTL by enabling a very high design and verification productivity. HLS handles several lower-level implementation details, including scheduling and pipelining, which allows designers to work at a higher level of abstraction on the more important architectural details. Designing at the C++ level allows for rapid iterations, thanks to faster simulations and easier debugging, and the ability to quickly explore different architectures. HLS is a perfect match for designing DNN accelerators, given its ability to automatically generate the complex control logic that is often needed. This webinar will describe the design and verification of the systolic array-based DNN accelerator taped out by our group, the performance optimizations of the accelerator, and the integration of the accelerator into an SoC. Our accelerator achieves 2.2 TOPS/W and performs ResNet-18 inference in 60 ms and 8.1 mJ.  

What you will Learn

  • Effective use of HLS for ML accelerator design
  • Analyzing performance and optimizations
  • Integrating an HLS design into an SoC

Who Should Attend

  • System architects and RTL/HW designers interested in using HLS for ML accelerators

Meet the speaker

Stanford University

Kartik Prabhu

PhD student in Electrical Engineering

Kartik is a PhD student in Electrical Engineering at Stanford University advised by Professor Priyanka Raina. He received his M.S. degree in Electrical Engineering from Stanford University in 2021 and B.S. degree in Computer Engineering from Georgia Tech in 2018. His research focuses on designing energy efficient hardware accelerators for machine learning.

Related resources

StreamTV’s SeeCubic: Catapult HLS enables Ultra-D 3D without glasses
White Paper

StreamTV’s SeeCubic: Catapult HLS enables Ultra-D 3D without glasses

StreamTV's SeeCubic faced an impossible task: develop a real-time conversion IP block for a custom SoC without knowing the target technology. This IP was critical for their glasses-free 3D solution.

BLUEDOT: Accelerating NN-based DeepField-PQO design using Catapult HLS
White Paper

BLUEDOT: Accelerating NN-based DeepField-PQO design using Catapult HLS

Service providers face high encoding costs due to HQ videos demand. BLUEDOT offers AI-based DeepField-PQO filter improving coding efficiency. It uses HLS for fast filter implementation into IP targeted for FPGA, Catapult for ASIC.

Xperi®: A Designer’s Life with HLS
Webinar

Xperi®: A Designer’s Life with HLS

This webinar will discuss two aspects of their experience going from RTL to HLS. The first topic is using HLS for algorithms such as Face Detection th